Pillar Networks++: Distributed non-parametric deep and wide networks
نویسندگان
چکیده
In recent work, it was shown that combining multi-kernel based support vector machines (SVMs) can lead to near state-of-the-art performance on an action recognition dataset (HMDB-51 dataset). This was 0.4% lower than frameworks that used hand-crafted features in addition to the deep convolutional feature extractors. In the present work, we show that combining distributed Gaussian Processes with multi-stream deep convolutional neural networks (CNN) alleviate the need to augment a neural network with hand-crafted features. In contrast to prior work, we treat each deep neural convolutional network as an expert wherein the individual predictions (and their respective uncertainties) are combined into a Product of Experts (PoE) framework.
منابع مشابه
Simulate Congestion Prediction in a Wireless Network Using the LSTM Deep Learning Model
Achieved wireless networks since its beginning the prevalent wide due to the increasing wireless devices represented by smart phones and laptop, and the proliferation of networks coincides with the high speed and ease of use of the Internet and enjoy the delivery of various data such as video clips and games. Here's the show the congestion problem arises and represent aim of the research is t...
متن کاملENERGY AWARE DISTRIBUTED PARTITIONING DETECTION AND CONNECTIVITY RESTORATION ALGORITHM IN WIRELESS SENSOR NETWORKS
Mobile sensor networks rely heavily on inter-sensor connectivity for collection of data. Nodes in these networks monitor different regions of an area of interest and collectively present a global overview of some monitored activities or phenomena. A failure of a sensor leads to loss of connectivity and may cause partitioning of the network into disjoint segments. A number of approaches have be...
متن کاملBank efficiency evaluation using a neural network-DEA method
In the present time, evaluating the performance of banks is one of the important subjects for societies and the bank managers who want to expand the scope of their operation. One of the non-parametric approaches for evaluating efficiency is data envelopment analysis(DEA). By a mathematical programming model, DEA provides an estimation of efficiency surfaces. A major problem faced by DEA is that...
متن کاملA New Load-Flow Method in Distribution Networks based on an Approximation Voltage-Dependent Load model in Extensive Presence of Distributed Generation Sources
Power-flow (PF) solution is a basic and powerful tool in power system analysis. Distribution networks (DNs), compared to transmission systems, have many fundamental distinctions that cause the conventional PF to be ineffective on these networks. This paper presents a new fast and efficient PF method which provides all different models of Distributed Generations (DGs) and their operational modes...
متن کاملAnalysis and Comparison of Load Flow Methods for Distribution Networks Considering Distributed Generation
Conventional passive distribution networks are changing to modern active distribution networks which are not radial. Conventional load flow methods should be modified for new distribution networks analysis. In modern distribution networks distributed generation (DG) units are embedded with conventional and/or renewable resources. DG units are generally modeled as PV or PQ nodes which inject ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1708.06250 شماره
صفحات -
تاریخ انتشار 2017